
Technical Report 
^/ 

Time Optimal Control 

for a Class 

of Common Random Disturbances 

N. P. Smith 

2 February 1968 

Prepared under Electronic Systems Division Contract AF 19(628)-5167 by 

Lincoln Laboratory 
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

Lexington, Massachusetts 





MASSACHUSETTS  INSTITUTE  OF   TECHNOLOGY 

LINCOLN  LABORATORY 

TIME OPTIMAL CONTROL 

FOR A CLASS OF COMMON RANDOM DISTURBANCES 

N. P. SMITH 

Group 76 

TECHNICAL REPORT 442 

2 FEBRUARY  1968 

LEXINGTON MASSACHUSETTS 



TIME OPTIMAL CONTROL 

FOR A CLASS OF COMMON RANDOM DISTURBANCES* 

ABSTRACT 

This report concerns the time optimal control of a system variable where the controlling 

input to the system is bounded, as is normally the case in practice. Optimal control is 

defined here as that control which yields time optimal trajectories. It is shown that time 

optimal control also yields optimal trajectories in the sense of minimizing the maximum 

error (if this is the initial error, minimize the overswing next) and the number of oscil- 

lations. The problem of optimal control of a second-order system initially in equilibrium 

and subjected to a large class of commonly occurring random disturbances is solved. Dis- 

turbances are considered to be controllable or uncontrollable. The broad class of random 

disturbances treated herein may have initial nonequilibrium values and consist of a unidi- 

rectional uncontrollable portion, followed by a controllable portion of sufficient duration to 

enable an optimal controller to bring the system to equilibrium. A single control function 

is derived which suffices to yield optimal trajectories. 

Previous attempts which were made to solve similar problems using a statistical approach 

succeeded only in obtaining approximate optimal control for disturbances restricted to a 

specific class such as white noise, Brownian motion, etc. In this report, the optimal con- 

trol applies to a much larger class of random disturbances than previous results, in that 

it does not restrict the disturbance to be a member of a single statistically defined class 

such as white noise, etc. The disturbances treated here contain the entire class of dis- 

turbances most commonly occurring in practice. This is true because in modern control 

design the maximum magnitude of the controlling input is sized such that most of the time 

the disturbances are considered controllable. Thus, the most general class of commonly 

occurring disturbances of interest to the control designer are those which are uncontrol- 

lable for a short duration, followed by long controllable portions. 

The success of the technique used in this report lies in assuming that the disturbance is 

initially known in advance. In this way, a single control function is derived that will yield 

optimal trajectories for as large a class of disturbances as mathematically possible. This 

is the best that can theoretically be achieved. Terms contained in the derived control func- 

tion yield those statistical parameters which are actually required to obtain optimal control. 

Once the basic form of the necessary statistical parameters has been obtained, the designer 

can estimate or measure what these parameters are in the actual system for practical op- 

timal control.   Experimental results verifying this fact are presented here. 

Accepted for the Air Force 
Franklin C. Hudson 
Chief,  Lincoln Laboratory Office 

* This report is based on a thesis of the same title submitted to the Department of Mechan- 
ical Engineering at Purdue University on 27 December 1967 in partial fulfillment of the 
requirements for the degree of Doctor of Philosophy. 
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TIME OPTIMAL CONTROL 

FOR A CLASS OF  COMMON RANDOM DISTURBANCES 

I.      INTRODUCTION 
l 

In 1944,  Oldenburger    derived the time optimal response of a second-order system to step 

changes in the load and reference value of the controlled variable while trying to optimize air- 

craft propeller governors.    This system was subject to a saturation condition on the manipulated 

(controlling) variable.    In the speed governor field,  the saturation condition is always satisfied. 

Optimal response is obtained by having the servomotor piston speed at maximum or zero at all 

times. 
2 

A paper on optimal nonlinear control by D. MacDonald    appeared in 1950,   with subsequent 

papers by Hopkin,    Bogner and Kazda,    Bushaw,    LaSalle,    and many others.    Hopkin and Wang 
o 

studied relay systems   for random inputs.     Rozonoer    published  a series of papers on the 

Pontryagin maximum principle concerned with minimizing the duration of trajectories or other 

functionals,   but this class does not include the maximum error.     For the system treated in this 

report,   it is shown that by minimizing error response time the maximum error is simultane- 

ously minimized. 
9 In 1953,   Klugge-Lotz    published a book describing in detail the design and performance of 

discontinuous control systems using combinations of linear control functions.   A paper on optimal 
10 control for step and pulse disturbances was written in 196 5  by Oldenburger and Chang,       who 

presented the optimal control functions for step and pulse disturbances of arbitrary magnitude 
11 

and duration.    In 1956,   Bellman,   Glicksberg,   and Gross       presented a general solution to the 

problem of optimizing error response time of a system from any given initial state to equilib- 

rium,   while the system experienced no external disturbance during this transition.    In 1957, 
12 

Pontryagin,   et al.,      published a book which introduced the maximum principle.    In this work, 

the general solution.for optimizing the error response time was presented,   where the controlling 
13 

variables were subject to a saturation limitation.    In 196 5,   Woodside      described an experimental 

method for finding approximate solutions to problems in optimal control,   and also obtained ex- 

perimental results for a number of examples using this method.    The systems were subjected 
14 

only to a smoothed white noise input and a Brownian motion input.    In 1966,   Oldenburger 

published a book concerned with optimizing entire response curves rather than a single index 

of performance.    His treatment of optimal control for arbitrary disturbances involved using a 

discrete approach and then going through a limiting process to obtain the optimal control function. 
1 5 

In 1966,   Kushner      wrote a series of papers concerned with the existence and sufficient 

conditions of optimal stochastic control.    He was concerned with minimizing the expected value 

of a functional.    Athans       wrote a paper on optimal control with bounded variables,   and was 

concerned with minimizing energy,   fuel,   and time. 



In this report,  a system with input  I  is considered,   where  I  is a disturbance to which the 

system is subjected;   for convenience,  this will be called a load disturbance.    The system is 

taken with one output only,   this being the controlled variable  x.    In addition to the disturbance 

input,  there is another quantity,   namely,   the controlling variable  m  which is to be varied by 

the controller to keep  x  constant or varying with time according to a reference value   r;   i.e., 

it is desired to have r = x at all times.    Let  e  denote the error (r — x).    In the normal equilib- 

rium state,   r = x = 0. 

For a constant   r,   many controlled systems may be represented by the equation 

x1  = K.m - K2! (1) 

where K.  and K? are constants.     Let m' denote the rate of change dm/dt of m   with respect to 

time  t.    In physical problems,   m'  is bounded so that 

|m'| « K3 (2) 

for a constant K, and the absolute value |m'|  of m'.    In many problems,  except for such factors 

as lags,   m'  can be made at any instant to take on any value between — K, and + K,. 

By the substitutions 

v x m m' 2 
x = KJC   -    M=

K:   •    U=
KT   •    L = KTK: (3) 

13 5 i 15 

Relations (1) and (2) become 

X'  = M - L (4) 

|u|«l       . (5) 

Differentiating,   Eq. (4) becomes 

X" = u-L'       . (6) 

When 

|L'|   < 1 (7) 

the load disturbance is said to be controllable.    The equilibrium state is defined by 

X = X1  = 0 (8) 

Now,   if the system starts from State (8),   but 

|L'|  > 1 (9) 

it follows that X" ^ 0,   and a system error  X with X'  ^f= 0 arises.    A perfect controller cannot 

prevent the error,  and the disturbance is uncontrollable.    If 

|L'|   = 1 (10) 

in practice,  an error will always arise,  and one cannot make (u — L') positive or negative as 

desired to bring the system back to the equilibrium state.    Thus,   the Cases (9) and (10) are 

both uncontrollable.    A unidirectional disturbance is defined as a disturbance for which the sign 

of L' is constant.    Figure 1 is a typical plot of L' where controllable and uncontrollable portions 

of the L' vs t-curve alternate.    The controllable portions are indicated by  C,   and the uncon- 

trollable portions by  U.    In practice,  violent increases in   L  followed by violent decreases will 



usually be rare;  also,  K, is chosen so that,  for normal disturbances,  the uncontrollable por- 

tions are followed by long controllable sections (see Ref. 14,  pp. 193 and 194). 

| 3-T6-?235| 

Fig. 1.    L1 vs time, illustrating typical controllable and uncontrollable intervals. 

Suppose that the disturbance L(t) is known not only for the past and present,  but also for 

all future time.    It is then possible to derive the optimal control function for this disturbance. 

This control function can then be utilized for the case when the future of the disturbance is not 

known.    In this way,  an optimal control function can be obtained for as large a class of disturb- 

ances as mathematically possible.    Since no control can be better than that obtained when the 

disturbance is known in advance,   a bound is set on the actual response which can be attained. 

Optimal control shall be referred to as that control which yields the minimum duration of 

the error response when the future of the disturbance L(t) is known arbitrarily far in advance. 

This report treats the problem of obtaining the control function which yields optimal control in 

the sense of minimizing the duration of the error response.    It is also shown that this control 

simultaneously minimizes the maximum absolute error |X..|   in the controlled variable   X   (if 

this is the initial error,  minimize the first overswing next) and the number of oscillations. 

This report proves that a unique optimal trajectory exists for the system of Eq. (6),   with L(t) 

consisting of a random unidirectional uncontrollable portion followed by a random controllable 

portion of sufficient duration to enable the optimal controller to bring the system to equilibrium. 

It is also shown that this optimal trajectory is obtained by having bang-bang control;   i.e.,   the 

controlling variable  u  takes on its saturation value 

|u|   = 1 (11) 

until the system reaches the equilibrium state.    The optimal control function   I    is defined as a 

function which causes  u  to take on its optimal value (for optimal control) at all times.    It is 

shown that optimal control is obtained by letting 

u = -sgnS (12) 

where 

u = -1 2 > 0 

u = +1 

u = 0 

Z < 0 

S = 0 (13) 



A phase is defined as a portion of the solution for which u  is a constant.    In this report,   an 

optimal control function   2   is derived which depends on the instantaneous values of the variables 

X,  X',   L,   and on the average values of L and   L'  over a future duration of time.    It is also shown 

that the single control Law (12) suffices to yield optimal trajectories.    Figure 2 is a block dia- 
gram of the optimal system. 

R O Hg> 
COMPUTER 
OFZ(t.T) CONTROLLER 
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Fig. 2.    Block diagram of optimal control system. 

II.     THE  MAXIMUM PRINCIPLE 

The purpose of this section is to use the maximum principle to show the existence of time 
optimal trajectories to equilibrium,   for a system initially at equilibrium and subjected to a 

unidirectional uncontrollable disturbance followed by a controllable portion of sufficient duration 

to enable an optimal controller to bring the system to equilibrium.    The disturbance may or may 
not have a step at  t = 0.    It will be shown here for what general conditions optimal solutions exist, 
and that optimal control is obtained with a unique two- or one-phase trajectory to equilibrium. 

The system described by Eqs. (5) and (6) may be put in the symbolism normally employed 

for applying the maximum principle.    The variables x.,   x?,   x,,  and  u shall be used where 

x,  = X 1 x2 = X' u = M' x,  = t (14) 

The system of Eq. (6) becomes 

x\ 

x1   = 1 x3 

u    <1 (15) 

Subscript  o  denotes variables in the initial state;   state (x. „, x2n' is defined as the state of the 

system at  t = t    so that (x., x,) (x, „, x,„) at t = t   •    The initial conditions at time t = t    are 10     20 o o 

x4(t0) '10 

x2(v 20 

x,(t   ) = t 3   o o 

L(t   ) = L o o 
(16) 

Times t.  and t, are the terminal times of the first and second phases,   respectively,   of a 
time optimal two- or one-phase trajectory to equilibrium.    States (x,,,x   ,) and (x12, x.,.,) are 



the states of the system at times t = t, and t = t0,   respectively,   so that (x,,xj = (x,.,x     ) 
J 1 2 J *   1     211     21 

at  t - t,,   and (x.,x,) = (x.-.x,   ) at  t = t,.    At the terminal time t = t,,   it is required that the 1 1      2 12     22 2 2 
system be at the equilibrium state 

Xl(t2» = X12= ° 

x2(t2) = x22 = 0       . (17) 

Pontryagin's function  H  is given on p. 60 of Ref. 12 by 

H = *   f    + *,f, + *,f, + *-f, (18) ooll2233 v     ' 

where 

x' 
0 

= f 
0 

x'l = fl = X2 

X2 
= f2 = (u - -L') 

x3 
= f3 = l (19) 

When the disturbance I,(t) is known arbitrarily far in advance,   it may be expressed in terms of 

t  only.    According to p. 59 of Ref. 12,  the auxiliary unknown x, defined by x,  = t is used in place 

of t  so that Eqs. (19) may be written in a form not depending explicitly on  t.     Kor minimum 
12 

time,   Pontryagin      gives f    = 1.    Now,   Relation (18) becomes 

H = *    + x *1 + (u - L1) *    + *3       . (20) 

In Ref. 12,   it is shown that 

*     = constants 0       . (21) 

Thus,   *     is a nonpositive constant.    If <!<    ^ 0,   it follows that   H  becomes a maximum with 
o 2 

respect to   u  when 

u = sgn*2 

The adjoint system is given by 

*• = 0 

*2 -*1 

*3 -*2L"       • 

(22) 

(23) 

The solution of Eqs. (23) yields 

*l  = kl 

*2 = k2-klt 

*3 - kjL +  L'(k2 -k4t) + k3 (24) 



for constants of integration k.,   k-,,   and k,.    From Ref. 12,   at the terminal time t = t,,  the "12 3 2 
condition 

*3(t2) = 0 (25) 

must hold to satisfy the transversality condition.    By Relations (20) and (24),    H  becomes 

H = *    + ^(x   + L) + k3 + u(k2 - k t)      . (26) 

By the second of Relations (24) and Eq. (22),  if (k., k?) ^ (0, 0) it follows that  u switches once 

at most from the u = +1 to u = —1,  or vice-versa. 

Suppose the system is on a one- or two-phase trajectory to equilibrium with t    =0.    Con- 

sider all two- or one-phase trajectories for which u = —1 for the first phase until t = t,,  and 

then u = +1 for the phase leading to equilibrium at t = t?.    For the single-phase case,  t.  = 0. 

Consider first the two-phase case,  from which the duration of each phase must be positive,  i.e., 

t. > 0,   and (t? — t.) > 0.    Later,  necessary and sufficient conditions are derived which insure the 

existence and positive duration of both phases.    These are restrictive conditions on the initial 

state of the system and on the disturbance L(t). 

The response of the system of Relations (15) along the first phase u = — 1 of a two-phase 

trajectory is obtained by direct integration as 

X2 = X20 ~~ t ~ L 

t2 2L 
xl = x10 + X20t_ V (1 +  "t   ]      '       t>0 (27) 

where the quantity tL is defined by 

r tL =   \      L dt      . (28) 
Jo 

Letting u = -1 and eliminating x2 from Eqs. (26) and (27) yields H = max H along the first phase, 

where 

maxH = *    + k.x-. - k_, + k,       . (29) o        1   20        2        3 v 

Since t. is the duration of the first phase,  the response x,(t) along the second phase is obtained 

from the second of Relations (15) and (28) as 

X,  = X,n - 2t.   + t - L , t^t, . (30) 2 20 1 1 v      ' 

Along the second phase u = +1,  Eqs. (26) and (30) yield 

maxH = *    + k1(x2Q - 2tt) + k2 + k3      . (31) 

Setting t = t, in Eqs. (30) with x   (t   ) = 0 yields 

(t2-t1) = (t1-x20+L2)      . (32) 

Since the duration of the second phase must be positive,   it follows from Eq. (32) that a necessary 

condition for the existence of two-phase optimal trajectories to equilibrium be 

(t1 -x2Q + L2) > 0      ,       t1»0 (33) 



where L? = L(t?).    Later,  it will be shown that Relation (33) is always satisfied for the disturb- 

ances and initial states treated in this report.    Setting max H = 0 in Eqs. (26) and (29),   and 

eliminating t? from Eqs. (25) and (32),  yield three linear homogeneous equations in k,,   k?,  and 

k3: 

° = *o + klX20-k2 + k3 

0 = *o+ki(X20-2tl) + k2 + k3 

0 = ki [L2(l - L^) + L^(x20 - 2tt)] + Lzk2 + k3 (34) 

where L'   = L'(t-,).    By Relation (21),  the quantity *    is a negative constant,   or zero.    Consider J2      " v"2 
; the 

take 

first the case where *    is a negative constant.    Because one of the *'s is redundant,  we may 

*    =-1 (35) o 

The solutions of Eqs. (34) and (3 5) for k.,  k2,  and k, are 

1 
k 1  "   (l-L2)(x20-tl-L2) 

k.=  ^ 2"  (i-L2)(x20-tl-L2) 

— T — T ' 
2 2 

k3 = (1 - L'2) (x2Q - t± -L2)  +   (1 -L2)       • (36) 

The disturbance L(t) is assumed to be controllable during the second phase,  hence, 

|L' I   < 1       ,        t1 < t < t2       . (37) 

It follows from Relations (32),   (36),   and (37) that if (t-> - t. ) > 0,   and t.  > 0 are satisified,  then 

the conditions 

k    < 0       ,        k2 < 0 (38) 

hold.    By Relation (21),   other possible optimal trajectories may exist for the case where 

*     = 0 (39) 
o 

instead of ^     = —1.    There is a solution of max H = 0 for the k's not all vanishing,   and hence of 
o b 

the *'s not all vanishing identically,  only if the determinant of the coefficients in Eqs. (34) is 

zero.    This condition is given by the relation 

(l-L2)(x20-L2-t1) = 0      . (40) 

By Relations (32) and (37),   it follows that Condition (40) is a necessary restrictive condition on 

x?n and L(t?) for the existence of optimal single-phase trajectories (u = — 1) to equilibrium. 

Later,   it is shown that Condition (40) does not occur for the initial states and disturbances 

treated here;  thus,  it may be disregarded for the optimal control of this report. 



By Relations (24) and (38),  it follows that 

*z<0 > 0< t < t 

*2=  ° • t = tl 

*2>0 • t. < t< t 1 

has therefore been shown that 

*2(t) ± 0 ,       t ^ t1 

(41) 

(42) 

for the case of two-phase trajectories to equilibrium, with u = —1 followed by u = +1. Consider 
trajectories with a single phase (u = +1) to equilibrium. For this case, let t. -• 0. In the limit, 

it follows from Relations (24) and (36) that 

lim    *    = -k.t       . (43) 

Thus,   by Relations (38) and (43),   the relations 

*    = 0      ,       t = 0 

*2 > 0       ,       t > 0 (44) 

hold for the case of a single phase to equilibrium.    The theory for the symmetrical case of one 

or two phases to equilibrium,   with u = — 1 during the phase leading to equilibrium,   is obtained 

in the same manner as in the preceding argument. 
By Relations (22) and (41),    H  is a maximum with respect to  u  when  u  takes on the values 

u = -1       , 0« t < t, 1 

u = +1        ,        t    < t < t,       . (45) 
1 Z 

It has also been shown by  Relation (36) that there are values of k.,   k?,  and k, such that 
max H = 0 for * ? =£ 0 over the duration of the trajectory.    It follows from the maximum principle 
that the control Schedule (45) is a necessary condition for time optimal trajectories to equilib- 

rium.    To show the existence of optimal trajectories requires only the proof that the Schedule (45) 
actually transfers the system from the initial state (x, n, x2   ) to the terminal state (0, 0) while 
being subjected to the disturbance L(t). 

HI.  EXISTENCE OF  TIME OPTIMAL TRAJECTORIES 

In this section,  it is shown that unique,  two-phase time optimal trajectories to equilibrium 

exist for the case of a unidirectional uncontrollable disturbance followed by a controllable por- 
tion of sufficient duration to enable an optimal controller to bring the system to equilibrium.    It 

is also shown that these time optimal trajectories are also optimal in other engineering senses 

such as that the maximum error is minimized and there is no overshoot. 

Consider the system of Eqs. (15) with the initial states 

X10 = ° 

x2Q = -LQ > 0 (46) 



and disturbance L*   consisting of a unidirectional uncontrollable portion which terminates at 

u 
state at  t = t. 

For t > t  ,  the disturbance L*  is controllable until the system, reaches the equilibrium 

We have thus defined a class of disturbances L*  satisfying the conditions 

|L*'|  ^ 1      , 0 < t < t ii u 

|L*'|   < 1       ,        t    < t « t^       . (47) 11 u 2 

First,   we treat the case where 

L* ' < -1 (48) 

for the uncontrollable interval 0 < t < t   ,   as shown in Fig. 3.    In order for the system to reach 
equilibrium along a time optimal two-phase trajectory,  we must have u = —1 for the first phase. 
Hence,  the x.-curve will bend away from the t-axis a minimum.    This control will result in a 

minimum error x. for each instant  t  in the interval (0,t   ) 1 u 
L*'  < — 1 during the interval 0 < t < t  ,   it follows that 

From Eqs. (15) and the fact that 

x    > 0 1 

x2>0 0 < t« t 

as shown in Figs. 3 and 4.     For t > t   ,  the disturbance L*  becomes controllable.    It follows by 

Eqs. (15) that if u = —1 holds for t > t   ,   at some time t = t._ where tR„ n u MM t  ,   we have 

xi<V 

^V (49) 

". ( U-I6-22J! | 

"IM 

_/u •+ 1 

J i V 

1 \ \\j 

0 '« *. ('.Vi 

Fig. 3.    System response to uncontrollable disturbance 

followed by controllable disturbance. 

Fig. 4.    System trajectories for various 

switching times. 



and x    reaches the maximum value of x       at time t = I It follows from Eqs. (15) that 

x    > 0 1 

x2 > 0       ,        0<t<tM (50) 

as shown in Figs. 3 and 4. 

If u = —1 holds for t > tM,  the inequality |L*'|  < 1 implies that x'   < 0.    We assume that 

there is a number u  and an instant t. such that for t > t.,   where t. > t  ,   we have 4 4' 4       u 

|L*'|  < [x < 1       . (51) 

It follows that with u = —1,  the x.-curve will eventually reach the t-axis.    Let t    denote the time 

at which the x.-curve crosses the t-axis,  as shown in Fig. 4.    For any vertical line   £    between 

tM and t  ,  the area between the x.-curve,  the t-axis,  the line t = tM,  and the line  £    is a mini- 

mum.    At the crossing point t = t  ,  we have 

X4(tc) = 0 

x2(tc) < 0       . (52) 

The curve from t = t„. to t = t    is not optimal in the sense that this results in an overswing 
M c ^ b 

for t > t    with x.   = x.      at the minimum point for x,      < 0.    To minimize —x,     ,   we must have 
c 1 lm lm lm 

u = +1 for t > t   .    The value of — x.      can be diminished further by letting  u  switch from — 1 to c lm J b 

+ 1 at a point P. and time t = t.,  where t    < t   .    As P, moves to the left in Fig. 3,  the minimum 

point x.      rises.    If we take P.  at the maximum point t = t  _.,   the x,-curve will rise to the right 

of t„„ as shown in Figs. 3 and 4.    It follows that there is a time t = t.  between t.T and t    such that 
IvI & 1 [VI c 

t     < t    < t (53) 
M       1        c *     ' 

where the x.-curve to the right of P    touches the t-axis for a value t = t7.    This point is the 

equilibrium state 

x4(t2) = x2(t2) = 0       . 

Starting at  t = t.,   the arc for which u = +1 up to the equilibrium state at  t - t. is denoted by T1 

in Figs. 3 and 4.    The curve in Fig. 3,   composed of the x, -curve from t = 0 to t = t.  (for which 

u = —1) and the T' -curve from t = t. to t = t? (for which u = +1),   is called the T-curve and is 

optimal,  as shown by the following argument. 

Every other solution T, passes above or coincides with the T-curve from t = 0 to t - t,,  or 

is identical with it up to a value t, of t,   where t. 4 t, < t?,   after which it crosses the t-axis and 

attains a minimum point below the t-axis at an instant t = t     where t     > t.,,  as shown in Fig. 3. K m m       2' 6 

If T.  = T for 0 < t ^ t,,  then for t > t. any curve T . will lie on or between the curve u = —1 and 

T'.    In fact,   for any t  where t > t. 

-(1 + L*'K x2 < (1 - L*') 

The slope x    of the curve with u = —1 decreases at the maximum rate,  whereas,   for T to the 

right of t = t.,  it increases at the maximum rate. 

10 



The T-curve is unique and optimal in that all other solutions yield overswings and greater 

durations from t, to equilibrium.    We have shown that the maximum error x,  is minimized by 

a unique two-phase trajectory to equilibrium with a phase u = —1 to t = t.  followed by a phase 

u = +1 to t = t?,   where (x,,x   ) = (0, 0) at  t = t?.    It follows that the conditions 

x    > 0 1 

x2 < 0       ,        tM<t<t2 (54) 

also hold along the optimal trajectory.    A similar argument holds for the case where x. _ = 0, 

x-._ ^ 0,  and L* ' > +1 for the uncontrollable interval 0 < t •$ t   ,   where t    < t.. 20 u u       1 
By the preceding argument,   we have proved the existence of unique two-phase trajectories 

to equilibrium with t. > 0,   and (t? — t.) > 0 for the system of Eqs. (15) subjected to the class of 

disturbance L*.    It follows that a unique time optimal solution exists for which Relations (38) 

and (41) hold and the control Schedule (45) yields max H = 0 with * _ ^ 0 along the T-curve. 

IV.   OPTIMAL RESPONSE OF SYSTEM 

liquations are now derived which describe the optimal response of the system of Eqs. (15) 

when subjected to a disturbance L(t).    General restrictive conditions on L(t) are given which 

must be satisfied in order for the system to reach equilibrium along an optimal two- or one- 

phase trajectory.    It is verified here that the class of disturbances L*  treated in this report do 

satisfy these conditions. 

Let the quantities L'.. and a . . be defined by 
ij iJ 

i = 0, 1;   j = 1,2 

t) L' dt       . <55> 

By direct integration of Eqs. (15) with u = —1 over the interval from t. = 0 to t. = t,,   the state 

of the system at t - t.  becomes 

X21  = X20 ~ ll(1 + L01) 

xll = X10 + x20*l ~ I *12 (1 + %1> (56) 

where the initial value of x?f) arises from an initial value of  L  at  t = 0, 

x?n = -L . (57) 
20 o 

Let (x. ., x? .) be the initial state of the system at the start of the second phase.    The state of the 

system at the terminal time t = t? is also obtained by direct integration of Eqs. (15) with u - +1 

over the interval from t. = t, to t. = t,,   thus, i       1 j       2 

x22 = x21 + (t2-tl)(1-!:i2, 

L! . = 
1         f   i   r ' -n vv\. L dt 

J

                1 

a . . = 2     zfV (t. - t.)  Jt.    J 
.11       1 

x11 + (t2-tl)x21+  j (t2-t4)    (1-«12)       • <58» 

1-1 



In order for the system to reach equilibrium at  t = t2,   along a phase u = +1 from the state 

(x,., x, . ),   it follows from Eqs. (17) and (58) that 

x21 =-(t2-y <i-i:i2) 

xll = | (tz-1!)2 <4 -2E12 + 5ri2'       • <59> 

We consider only disturbances which are controllable along the second phase;   then,   by 

Relation (37),   it follows that 

|L(t) - L(t4)|   <(t-t1)      ,       t4 <t<t2       . (60) 

Hence,   it follows from Relation (60) and the first of Relations (55) that 

|L12|   <1       . (61) 

In view of Relations (55) and (37),  we may also write 

(ff_-2L,)< ?\    2   |L(t)-L(t?)|  dt       . (62) 
1 (t2-t1)^

Jt1 
Z 

By Relation (37),   it also follows that 

|L(t)-L(t2)|   <(t2-t)      ,       t1<t<t2       . (63) 

Thus,   by Relations (62) and (63),   we have 

I«12-2L12I<1       • (64) 

Since (t? - t. )> 0,   it follows from Relations (59),   (61),   and (64) that the state of the system at 

t = t.  must satisfy the conditions 

x21<0 

x11>0       . (65) 

By Relations (56),  we may express Conditions (65) in the form 

x2o-V1 + Hi)<0 

"IO^ZI*^ z-tiZ{1 + 2l:bi-5oi,J>0    • <66) 

By Relations (46) and since t. > 0,   it follows that the conditions 

(1 + L{,4) > 0 

(i + 2LJ)1-a01)>0 (67) 

must be satisfied in order for Conditions (65) to be satisfied.    We shall now show that Conditions 

(67) are satisfied for the class of disturbances L*  treated in this report. 

By Eqs. (27) and (49),  the state of the system at t = t.. is 
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xi(tM) = X20tM-I(1 + S0M)tM (68) 

where 

i f' ' £ J„M L"'"' 

%M="T j   M   (tM"t)L*'dt       . (69) 

Eliminating x?0 from Relations (68) yields 

xlM=ltM(1 + 2L0M-%M)      • <70> 

Since x1      > 0 and x      > 0,   it follows from the first of Relations (68) and Relation (70) that 

(1 + E0M)>0 

(1 + 2E0M-%M)>0       • <71> 

We define the quantities L'    • and aM* to be 

i     Cti 
T   ' -      \ T  * ' 

Ml  '   (t1 -t) Jt 
dt 

M 

"Ml=   H      '       ,2 I'   (t1-t)L^dt       . (72) 
(ll       IVl' M 

By Relations (55),   (69),   and (72),   we have 

D     -  'M  D      +     (i -  ^   L' ^01  "   ^    1J
0M 

+      \ ti)   LMi 

%1 = 72  [tM(%M " 2L0M> + «Ml(tl " W2 + 2,
'•'MV       • <73) 

Since L*  is controllable over the interval tM •$ t •$ t.,  we have 

lEMli  <1      •        lSMll<4       • (?4) 

Hence,   by Relations (71),   (73),   and (74),   it follows that Conditions (67) are satisfied for the 

class of disturbances L*   and initial conditions of Relations (46) treated in this report.    A sim- 

ilar argument holds for the case where x1    = 0,   x      > 0,   and L*' > +1 for the uncontrollable 

interval t ^ t  . u 

V.    OPTIMAL CONTROL FUNCTION 

We now introduce a control function Z(t, T) and prove that time optimal control for the class 

of disturbances L*   and initial states of Relations (46) is obtained by the control Law (12). 

\i 



Let T  be the duration of the second phase u = +1,    where 

T = (t2 -t4) 

Let L' and   L  be defined by the relations 

•t+T 
L*1 dt 

t+T 
L* dt (75) 

We introduce the function 2(t, T) where 

S(t,T) = x±(i -L
1 sgnx,,)2 +  | x2  |x2|   •     1 + 2(L' +   ^^ ) sgn x2 

Eliminating (t, - t.) from Relations (59) yields 2 .  = 0,  where 

21 = S(t4,T)       • 

(76) 

(77) 

Note that Eq. (76) also yields 2,  = 0 for a pre-equilibrium phase u = —1 as well as for u =   +1, 

where,   again,   t = t,  at the start and t = t2 at the end of this phase. 

We shall now prove that time optimal control is obtained by the control law 

u = -sgn 2(t, T) (78) 

where 

u = -1       , 2(t, T) > 0 

u =   +1 2(t, T) < 0 

u = 0 2(t, T) = 0 (79) 

By the maximum principle,  we have shown that time optimal control is obtained by the control 

Schedule (45).    From Relations (46) and Eq. (76),   it follows that 

2(0, T) >0 10) 

First,   consider the case where 2(0, T) = 0.    According to Relations (76),   this can happen only 

if the relation 

x2 |x2| 1 + 2(L' +   ^r-^) sgnx2 = 0 (81) 

is satisfied at t = 0.    If Relation (81) is satisfied,  we have u = 0 at t = 0 by Relations (79).    It 

follows by Relation (48) and the second of Relations (15) that 

x'X) 

x2>0 

xt > 0 

t = +6 

(82) 

where   6   is a small positive quantity.    Thus,   from Relations (76) and (82),   we have 

2(6, T) > 0       . (83) 
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By Relations (50),   (76),  and (83),  it follows that 

S(t, T) > 0      ,       6 4 t« tM      . (84) 

Thus,  the control Law (78) yields optimal control for the interval 0 < t -^ t...    The proof of the 

relation 

2(t, T) > 0      ,       tM <t <t1 (85) 

follows from p. 212 of Ref. 14.    For a given t,  the functions £(t, T) belong to a one-parameter 

class with  T as the parameter.    We have shown that,  until t = t     on an optimal trajectory,  any 

member 2(t, T) of this class will do in Relation (78);  in fact,   any member will suffice until we 

reach a pair of values (t,, T ,) of (t, T) for which 

2(1^,T4) = 0 (86) 

holds.    The function 2(t, T) will change sign at a time t = t    where tM < t. < t   ,   as shown from 

the following argument.    Note in Fig. 3 that if we remain on the u = — 1 curve,  at some time t = t 

we have x   (t   ) = 0,   and x   (t  ) < 0;   thus,   2(t   , T) < 0 for any T.    It follows that for any  T  there 

is a point between t = tM and t = t    where the function 2(t, T) changes sign. 

By Relations (54),   we have 

xt > 0       ,        t1<t<t2       . (87) 

We have shown that a unique two-phase time optimal trajectory to equilibrium is obtained with 

u = — 1 along the first phase until S(t, T) = 0,   followed by u = +1 along the second phase until 

t = t,.    It follows that the switch at t - t. occurs when Z(t.,T) = 0.    Thus,  the T-curve in 

Fig. 3 is optimal where t. is the smallest value of t  for which there exists a value of t    such 

that 2(t,T) = 0 at t = t,,  and (x.,x?) = (0,0) at t = t?.    A similar argument holds for the case 

where x.n = 0,  x_,_ > 0,  and L* ' > 1 for the uncontrollable interval 0 < t < t  ,  where t    < t.. 
10 20 u u       1 

We have proved the following theorem. 

Theorem 1. 

Let a second-order system [Eqs. (15)] be at equilibrium for t ^ 0,   and 

let the system be subjected to a disturbance L(t) for t > 0,   where L(t) 

is made up of an initial uncontrollable portion followed by a controllable 

portion sufficiently long for an optimal controller to bring the system to 

equilibrium.     Let   L  and L' be the averages 

** 

t + T ,   pt+T 
L dt       ,       TJ; \ L' dt (88) 

of  L  and L' for the time interval (t,  t + T),   and let the control function 

2(t, T) be defined by Eq. (76).    Optimal response in the sense of minimum 

time,  maximum error minimized,   and no overshoot is obtained with the 

control law 

u = -Sgn2(t, T) [Law (78)) 

until a pair of values (t   , T   ) of (t, T) are attained for which 
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^(tj.Tj) = 0       . (89) 

At the instant t = t.,  control is switched to the equation 

u = sgnx1 

and remains at this value of u  until equilibrium is attained. 

A similar argument holds for the initial states x. . = 0,   x^„ < 0,   with L' > +1 for the uncon- ° 10 20 
trollable  portion,   or x 0,   \       '   0,   with I,'  *   — i   for tin- uncontrollable portion.     Thus,   the 

results of Theorem 1 also apply for these conditions. 

VI.   DELAY IN SWITCHING 

In this section,   we consider the effect of a time delay in switching  u  from +1 to —1,   or 

vice-versa,   for the optimal control of this report.    It is shown that,   for a time delay in switch- 

ing  u,   the control Law (78) with the control function of Eq. (76) yields near-optimal trajectories 

to equilibrium.    As the delay in switching becomes small,   the near-optimal approaches the op- 

timal trajectory.    It is also shown here that a single control function of Eq. (76) suffices to yield 

optimal trajectories to equilibrium. 

The original idea upon which the following argument is based is credited to Oldenburger. 

Consider the case where u = — 1 for the first phase of an optimal trajectory until for values t, 

of t   and T.  of  T  we have  -(t.,T.) = 0.    At this point,   u  switches from —1 to +1 for optimal 

control.    In practice,   there will be a delay in switching.    Suppose that we switch at  t = (t,  +  e), 

where € > 0,   instead of at  t = t,  for which control Law (78) holds.    Thus,   at  t - t. we leave 1 v     ' 1 
the optimal trajectory where u = +1 after t = t•,   and remain on u - —1 until t - (t.  -t   ().    This 

trajectory is non-optimal.    Since u = — 1 on the non-optimal trajectory for each  t   in the interval 

(t,,   t    + c ),   it follows that at each instant  t  in this interval both x,  and x? are less than they 

would be if we had stayed on the optimal trajectory (u = +1).    If   t   is small enough,   the quantities 

(sgnxJ,   L,   L,   and L' occurring in £(t,   T, — t + t. ) are the same at t = (t, + e) for both the 

optimal and non-optimal trajectories.    Since x.  and x, are less for the non-optimal than for the 

optimal trajectories,   it follows that S(t,   T. — t + t. ) is less at  t - (t.  +  c) for the non-optimal 

than for the optimal trajectory.    Taking the time derivative 2'(t, T) of £(t, T) in Eq. (76) and 

evaluating for the interval t, ^t ^t, yields 

2'(t, T) = 0      ,       t4 <t<t2      . (90) 

Since S(t1,T.) = 0,   by Eq. (90) it follows that 

2(t, T) = 0      ,       tt <t ^t2       - (9D 

Since Relation (91) holds along the phase u = +1 to equilibrium for the optimal case,   it follows 

that 2(t,   T. — t + t.) < 0 at t = (t.  +  e) on the non-optimal trajectory.    If we use control Law (78) 

with the control function S(t,  T. — t H t.),   it follows that we switch to u = +1 at t = (t1 + e).    For 

the interval (t.  +  e) •$ t < t,,   the sign of S(t,   T. — t + t.) remains unchanged for both the optimal 

and non-optimal trajectories except that x.  and x? are less for the non-optimal than for the op- 

timal trajectory.    B'or both trajectories,  we have u = +1 over the time interval (t.  +  r,   t    + T. ), 

but x,  and x, for the non-optimal trajectory are both less than for the optimal until x.   = 0 on the 
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optimal trajectory;  then,  £(t,  T. — t + t.) < 0 for the non-optimal trajectory until x.  = 0.    Thus, 

for the non-optimal trajectory,  the sign of u  is opposite that of 2(t,   T, — t + t.) over the inter- 

val (t1 + c)4t< (t1 + T4). 
On the non-optimal trajectory,   (x.,x?) =£ (0,0) at t = (t. + T  );  in fact,  x. < 0 at this t, 

from which x.  becomes zero before t = (t, + T,).    Let the time  t  at which x.  becomes zero be 1 11 1 
denoted by t - (t.  + T    -A),   where A > 0.    When the point at  t = (t    + T    -A) on the non- 
optimal trajectory described above is attained,  one may start over again with a function E(t,T) 
for arbitrary  T  and repeat the argument.    This process can be continued so that the control 

Law (78) always applies for appropriate choices of £(t,T).    As   e  goes to zero,  the non-optimal 

trajectory approaches the optimal.    We have proved the following theorem. 

Theorem 2. 

For the system and disturbance of Theorem 1,   optimal control is attained 

in practice by letting 

u = -sgnZ(t,T) [Law (78)] 

where   T  in 2(t, T) is arbitrary until for a pair of values (t., T   ) of (t, T) 

S(t1,T1) = 0       . 

Thereafter,   control Law (78) holds with  T = (T. - t + t  ) until x    = 0. 

At this point,   a new function S(t,T) is used with arbitrary  T  and the 

process is repeated so that control Law (78) always applies for appro- 
priate choices of T  in Z(t,T).    Thus,   the single control Law (78) 

suffices to yield optimal trajectories to equilibrium. 

Vn.    EQUIVALENCE OF REFERENCE INPUT TO LOAD CHANGES 

In the preceding theorems,   we considered the load disturbance to be the only input to the 

system.    Now,   we shall consider the system of Eqs. (15) subjected to two inputs:    namely,   a 

reference input r(t),   and the load disturbance L(t).    We shall show that,  in effect,  the addition 
of a reference input is equivalent to replacing the disturbance L(t) in Eqs. (15) by a new disturb- 

ance L   (t) with no reference input.    Thus,  the preceding theorems will also apply to the system 
of Kqs. (15) subjected to both a load disturbance   L  and a reference input   r. 

Let  e   be the difference between the reference value   r  of the controlled variable x. given 

by 

e = x. - r      . (92) 1 

The system of Eqs. (15) is now replaced by 

e"  = u - L^,      ,        |u| < 1 (93) 

where 

L    = L + r'       . (94) 

It follows that a variation in the reference r(t) is equivalent to a variation r'(t) in the load L  . 

The variables x, and x    are replaced by the error  e  and the time derivative of the error  e'. 
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NONLINEAR 
(RAMP) 
CONTROL  FUNCTION 

Fig. 5.    Experimental results of system response to random disturbance 
using linear and nonlinear control functions. 

Fig. 6.    Phase plane trajectories of I = 0 for L' = constant = a. 
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respectively.    Since the average of the sum of two variables is equal to the sum of the averages, 

we may write the average of L   and L'   over the interval of time  T as 

L    =  L + r' r 

L'   = L' + r"       . (95) r 

From Eqs. (76) and (95),   we have the optimal control function 2(t,T) for the equivalent load L 
given by 

S(t, T) = e(l - L'   sgne)2 + j e' 
I L    - L  v 

1 + 2fL^ +        rT     rJ  sgne' (96) 

For L    to be controllable by Relation (7),   we must have 

|L' + r"|  < 1       . (97) 

We have shown the following statement to be true.    Let the system of Eqs. (15) be in equilibrium 
for t 4 0 and be subjected to two inputs L(t) and r(t) for t > 0,   where 

Lr(t) = L(t) + r'(t) (98) 

and L    is made up of an initial uncontrollable portion followed by a controllable portion suffi- 

ciently long for an optimal controller to bring the system to equilibrium.    According to Theorems 
1 and 2,   optimal response is obtained with the control Law (78) and the control function given in 
Eq. (96). 

Consider the class of inputs r(t) which may be closely approximated by a quadratic function 
of time,   i.e., 

r = r    + r.t + r,t (99) o        1 2 

for constants r   ,   r      and r?.    Consider also the class of disturbances which may be closely 

approximated by a ramp where 

L s L    + at (100) o 

for constant  a.    By Relation (94),   the equivalent disturbance L    is a ramp.    The quantity   r  is 

an arbitrary value for t < 0 and there may be a step in L    at  t = 0.    By Relations (99) and (100), 
the optimal control function 2(t, T) of Eq. (96) may be approximated closely by 

£(t, T) = e |l -L'sgne| + j e< |e'|       . (101) 

We use control Law (78) with 2(t,T) approximated by Relation (101) for suboptimal control. 
When | L' |  « 1,  the optimal control function 

2 = e + y je'l e1 (102) 

for step changes is effective in obtaining suboptimal response.    Experimental results were ob- 

tained using the control function of Relation (101) with the control Law (78).    This suboptimal 

control was effective in obtaining suboptimal response,  as shown in Fig. 5. 
The curves  2 = 0 for 2 of Relation (101) for various values of L' ,   where L'   = constant = a, r r 

are shown in Fig. 6.    In practice,   one may not wish or be able to measure the quantity L' ,   in 
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which case it is necessary to express the control function S   of Relation (101) in terms of e, 

e',   and e" only.    When u = 1,   Relations (93) yield 

|IVJ  = |l-|e»|| 

sgn L'   = sgn(e" - e"3) (103) 

by which we may express L'   in the form 

L'   = ll - |e"||   •   sgn(e" -e"3)       . (104) 

We may now substitute L'   from Eq. (104) into  2   of Eq. (101) and obtain a control function in 

terms of e,   e',   and e" only.    Because of ever-present noise,   some filtering of e" is necessary 

in order to employ 2   of Eq. (101) with L'   of Eq. (104).    Normally,  the system of Relations (93) 
will not describe the system exactly.    If the approximation is good,  the control will be suboptimal. 

Laboratory tests of the use of the control function 2   of Eq. (101) gave substantial improve- 
ment for random disturbances over what could be obtained by known techniques.    Here,   L'   is 

now allowed to be a variable.    To explain the remarkable improvement obtained in the labora- 
tory,  we considered optimal control for more general disturbances than ramps. 

Vm.    EXPERIMENTAL RESULTS 

We now discuss tests which were run to evaluate system performance for random disturb- 
ances using the control Law (78) with the control function of Relation (101) which is optimal for 

ramp disturbances.    Thus,  if the disturbance may be closely approximated with ramps,  the 
control function of Relation (101) will be a good approximation to the optimal control function of 

Eq. (96) and will yield suboptimal response. 

The system of Eqs. (15) was simulated on an analog computer in the control systems labora- 
tory.    The disturbance L  (t) was generated with a random signal generator and filtered twice 

to yield controllable and uncontrollable intervals similar to those shown in Fig. 1.    Control Law 

(78) with the control function of Relation (101) were simulated along with the system to yield 

closed-loop control.    To evaluate system performance,   a second system was simulated identical 

to the first except for a linear control function in place of 2   of Eq. (101).    The responses of the 
two systems were compared over long duration runs,   and a typical section of these runs is shown 

in Fig. 5.    The linear control function used in the second system was of the form 

2  = e -ae' + j3e" (105) 

for constants   a   and  /?.    If these constants are properly chosen,   the linear function of Eq. (105) 

will give reasonably close response to that obtainable with  2   of Eq. (101) for a given disturb- 

ance.    See Fig. 5 where the coefficients in Eq. (105) were chosen to yield a minimum rms value 

of the controlled variable  e  for the random disturbance L    shown.    Many of the same type tests 
shown in Fig. 5 were run and,   in all cases where the disturbance was composed of short uncon- 

trollable sections followed by long controllable sections,   the control function of Relation (101) 

yielded better response than the linear function of Eq. (105),   i. e.,   shorter error response dura- 
tion,   smaller maximum error,   and fewer overshoots.    It was also determined by tests with   2 
of Eq. (101) with the L'  term omitted that not nearly as good results can be expected for this 
case.    Thus,   a curve L  (t) is better approximated by a broken line formed by secants than by 

using a staircase approximation. 
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IX.   SUMMARY AND CONCLUSIONS 

The problem of time optimal control of a second-order system initially at equilibrium and 

subjected to a class of common random disturbances is solved.    The class of disturbances 

treated are those most commonly encountered in practice,  and are made up of an initial uncon- 

trollable portion followed by a controllable portion of sufficient duration to enable an optimal 

controller to bring the system to equilibrium.    Necessary conditions for optimal control were 

derived using the maximum principle,   and these conditions were shown to be satisfied with the 

control of this report.    Necessary conditions for the existence of optimal trajectories to equilib- 

rium were also derived.    These are restrictive conditions on the initial state of the system and 

disturbance,  and were also shown to be satisfied for the class of disturbances and initial states 

treated here. 

A control law and control function were derived to yield optimal trajectories to equilibrium, 

and these trajectories were shown to be also optimal in other engineering senses such as that 

the maximum error was minimized and there was no overshoot.    It was shown that a single con- 

trol law with a single control function sufficed to yield optimal trajectories to equilibrium. 

Laboratory tests were made comparing an approximate optimal control function with the 

best linear control function.    These tests were run with the system subjected to a random dis- 

turbance,   and the results indicated superior control over what could be obtained by known 

techniques. 
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